ESS 7
Lecture 13
April 30, 2010
Substorms
Time Series of Images of the Auroral Substorm

- This set of images in the ultra-violet from the Polar satellite shows changes that occur during an auroral substorm.
- In aurora substorms go through a series of stages.
- They start with a brightening of an auroral arc nearest the equator.
- Moments later the aurora brightens more, and expands poleward and to the west.
Substorm Auroras from the Ground

B. Freeman: "I captured this movie using a Sony digital 8 camcorder (night shot setting) and played it back at 2X speed to show more movement in a shorter time."
Oct. 1 2002
Eagle Hill, Alberta, Canada

spaceweather.com
Whack a Magnetosphere! (Two Substorms Associated with a Large Increase in Dynamic Pressure.)
The Discovery of the Substorm

• Soon after Akasufu discovered the auroral substorm in 1964 the search began to find the corresponding changes in the magnetosphere and the solar wind.

• The auroral activity is associated with currents in the ionosphere which create magnetic field changes.

• Much of the effort in studying substorms has been to define the solar-wind coupling parameters that can be used to predict the strength of magnetic activity.
A Digression on Field Aligned Currents

• There is one more major set of currents in the magnetosphere-field aligned or Birkeland currents
 – The field aligned currents extend from the magnetosphere to the ionosphere.
 – Region 1 currents are at high latitudes and flow into the ionosphere on the dawn side of the magnetosphere and out on the dusk side.
 – Region 2 currents at lower latitudes flow into the ionosphere on the dusk side and out on the dawn side.
Summary of Magnetospheric Currents

- Magnetopause currents
- Ring current
- Parallel currents
- Tail currents with magnetopause currents removed.

The red and blue currents occur during substorms.
Magnetic Observatories
Data from Magnetic Observatories

- There are over 500 observatories (250 in previous figure)
 - Data from so many sources is difficult to handle.
 - Indices have been generated to organize these observations.

- The primary sources of ground magnetic disturbances during substorms are the electrojets and the substorm current wedge.

- The sources of the midlatitude storm time variations (D_{st}) are the magnetopause current, the ring current and the partial ring current.
Data from Magnetic Observatories

- There are over 500 observatories (250 in previous figure)
 - Data from so many sources is difficult to handle.
 - Indices have been generated to organize these observations.

- The primary sources of ground magnetic disturbances during substorms are the electrojets and the substorm current wedge.

- The sources of the midlatitude storm time variations (D_{st}) are the magnetopause current, the ring current and the partial ring current.
Auroral Electrojet Indices

- Positive perturbations are produced by a concentrated current (called an auroral electrojet) flowing eastward. They are observed by stations in the afternoon or evening.
- Negative perturbations are produced by a westward electrojet. They are observed near and past midnight.
- These currents flow at ~120km altitude and are carried by auroral particles.
- The positive and negative envelopes give the AU and AL indices.
Ionospheric Currents in a Substorm

- The polar magnetic substorm is caused by two current systems (DP-2 and DP-1)
- DP-2 consists of two electrojets (east and west) flowing towards midnight
- DP-1 is a current system centered at local midnight that flows within the region of bright aurora
Summary of Magnetospheric Currents

- Magnetopause currents
- Ring current
- Parallel currents
- Tail currents with magnetopause currents removed.

The red and blue currents occur during substorms.
Magnetic Signature

Canadian Space Agency data for the substorm of the movie. The current flowed over Hudson Bay. Figure out the direction using the right hand rule.

X is the northward part

Z (downward)
Substorms Occur when the Interplanetary Magnetic is Southward

- Correlation analysis between the auroral-electrojet index AE (difference between the envelop of positive -AU- and negative -AL- magnetic perturbations at auroral latitudes) and five solar wind parameters (u, n, B, B_n, B_s)
 - B_n is hourly average of the B_{ZGSM} magnetic field when B_{ZGSM}>0.
 - B_s is hourly average of the B_{ZGSM} magnetic field when B_{ZGSM}<0.

- Activity peaks in B_s for the hour prior to the hour when the activity was measured.

- AL/v^2 as a function of B_s (B_z<0) and B_n (B_z>0). No dependence on B_n but strong dependence on B_s.
Magnetospheric Substorms

- The phenomena associated with substorms in the magnetosphere start before the auroral signatures.

- McPherron interpreted these phenomena as the *growth phase* of the substorm.
 - Energy extracted from the solar wind is stored in the magnetosphere.
 - The initial interval of slowly growing AU and AL.
 - The growth phase usually lasts 30 minutes to one hour.
 - The magnetic perturbations during the growth phase results from increased ionospheric currents.

- The *expansion phase* corresponds to the release and unloading of the stored energy.

- The *recovery phase* is the return of the system to its ground state.
The Events in the Magnetosphere During a Substorm - Growth Phase

- A southward turning of the IMF initiates or increases dayside reconnection.
 - Magnetic flux from the Earth connects to the IMF and is transported over the polar caps into the lobes.
 - The return flow in the magnetosphere is unable to return flux to the dayside as fast as it is removed. The dayside magnetopause is eroded.

- The magnetic field in the tail lobes increases storing energy for later release.

- The plasma sheet thins.
Events in the Magnetosphere During a Substorm – The Late Growth Phase

Some time during the late growth phase reconnection begins on closed field lines in the near-Earth plasma sheet.

- The reconnection is slow at first.
- As closed field lines are cut they reconnect to form a magnetic O region called a plasmoid (technically a magnetic flux rope).
- This stage of the substorm continues until the last closed field line is severed by the reconnection process.
- The reconnection rate increases during the late growth phase.
Events in the Magnetosphere During Substorms – The Expansion Phase

- When the last closed field line is severed the reconnection rate becomes explosive. This is the onset of the expansion phase of the substorm.
 - The current “wedge” may occur at this time.
 - 20%-30% of the open magnetic flux stored in the tail lobes is rapidly reconnected.
 - This is the principal energy conversion process during substorms.
- The severed plasmoid leaves the magnetotail.
- If the reconnection fails to reach the lobe field lines the disturbance is quenched. This is called a pseudobreakup.
Events in the Magnetosphere During Substorms – The Recovery Phase

- The reconnection of open field lines forms closed field lines earthward of the X-line with strong earthward flows.
- Eventually the balance of forces in the plasma sheet changes and the X-line begins to move tailward.
- As the X-line moves toward its distant location, the currents and aurora begin to die at the lower edge of the auroral bulge. This is the beginning of the recovery phase.
- In time all the disturbances die away, the substorm is over, and the magnetosphere returns to its ground state.
The Events Described are Controversial

• The exact sequence of events just described is highly controversial – I’ve presented the most widely accepted picture but not the only one.
• All investigators agree that reconnection drives the system.
• Controversial parts of the sequence of events include whether the expansion phase is caused by reconnection or whether the cause of the expansion phase also causes the tail reconnection.
• In 2007 NASA launched a 5 spacecraft mission called THEMIS
Postions of the THEMIS Spacecraft During a Conjunction on March 1, 2008
Assignment

• Read Chapter 5
• Problems 4.4 and 4.6
• In the solar wind near Earth, the thermal pressure is about 10^{-11} Pa. We also know that there are usually about 10 ions/cm3. Estimate the temperature of the solar wind

• Due May 7, 2010